ITO薄膜是一種n型半導(dǎo)體材料,具有高的導(dǎo)電率、高的可見光透過率、高的機(jī)械硬度和良好的化學(xué)穩(wěn)定性。
一、概述
摻錫氧化銦(IndiumTinOxide),一般簡稱為ITO。因此,它是液晶顯示器(LCD)、等離子顯示器(PDP)、電致發(fā)光顯示器(EL/OLED)、觸摸屏(TouchPanel)、太陽能電池以及其他電子儀表的透明電極最常用的薄膜材料。
二、發(fā)展
真正進(jìn)行ITO薄膜的研究工作還是19世紀(jì)末,當(dāng)時(shí)是在光電導(dǎo)的材料上獲得很薄的金屬薄膜。關(guān)于透明導(dǎo)電材料的研究進(jìn)入一個(gè)新的時(shí)期還是應(yīng)該在第二次世界大戰(zhàn)期間,主要應(yīng)用于飛機(jī)的除冰窗戶玻璃。在1950年,第二種透明半導(dǎo)體氧化物In2O3首次被制成,特別是在In2O3里摻入錫以后,使這種材料在透明導(dǎo)電薄膜方面得到了普遍的應(yīng)用,并具有廣闊的應(yīng)用前景。
三、基本性能
(1)、ITO薄膜的基本性能ITO(In2O3:SnO2=9:1)的微觀結(jié)構(gòu),In2O3里摻入Sn后,Sn元素可以代替In2O3晶格中的In元素而以SnO2的形式存在,因?yàn)镮n2O3中的In元素是三價(jià),形成SnO2時(shí)將貢獻(xiàn)一個(gè)電子到導(dǎo)帶上,同時(shí)在一定的缺氧狀態(tài)下產(chǎn)生氧空穴,形成1020至1021cm-3的載流子濃度和10至30cm2/vs的遷移率。這個(gè)機(jī)理提供了在10-4Ω.cm數(shù)量級(jí)的低薄膜電阻率,所以ITO薄膜具有半導(dǎo)體的導(dǎo)電性能。ITO是一種寬能帶薄膜材料,其帶隙為3.5-4.3ev。紫外光區(qū)產(chǎn)生禁帶的勵(lì)起吸收閾值為3.75ev,相當(dāng)于330nm的波長,因此紫外光區(qū)ITO薄膜的光穿透率極低。同時(shí)近紅外區(qū)由于載流子的等離子體振動(dòng)現(xiàn)象而產(chǎn)生反射,所以近紅外區(qū)ITO薄膜的光透過率也是很低的,但可見光區(qū)ITO薄膜的透過率非常好,由于材料本身特定的物理化學(xué)性能,ITO薄膜具有良好的導(dǎo)電性和可見光區(qū)較高的光透過率。
(2)、影響ITO薄膜導(dǎo)電性能的幾個(gè)因素ITO薄膜的面電阻(R)、膜厚(d)和電阻率(ρ)三者之間是相互關(guān)聯(lián)的,這三者之間的計(jì)算公式是:R=ρ/d。由公式可以看出,為了獲得不同面電阻(R)的ITO薄膜,實(shí)際上就是要獲得不同的膜厚和電阻率。
一般來講,制備ITO薄膜時(shí)要得到不同的膜層厚度比較容易,可以通過調(diào)節(jié)薄膜沉積時(shí)的沉積速率和沉積的時(shí)間來制取所需要膜層的厚度,并通過相應(yīng)的工藝方法和手段能進(jìn)行精確的膜層厚度和均勻性控制。
而ITO薄膜的電阻率(ρ)的大小則是ITO薄膜制備工藝的關(guān)鍵,電阻率(ρ)也是衡量ITO薄膜性能的一項(xiàng)重要指標(biāo)。公式ρ=m/ne2T給出了影響薄膜電阻率(ρ)的幾種主要因素,n、T分別表示載流子濃度和載流子遷移率。當(dāng)n、T越大,薄膜的電阻率(ρ)就越小,反之亦然。而載流子濃度(n)與ITO薄膜材料的組成有關(guān),即組成ITO薄膜本身的錫含量和氧含量有關(guān),為了得到較高的載流子濃度(n)可以通過調(diào)節(jié)ITO沉積材料的錫含量和氧含量來實(shí)現(xiàn);而載流子遷移率(T)則與ITO薄膜的結(jié)晶狀態(tài)、晶體結(jié)構(gòu)和薄膜的缺陷密度有關(guān),為了得到較高的載流子遷移率(T),可以合理的調(diào)節(jié)薄膜沉積時(shí)的沉積溫度、濺射電壓和成膜的條件等因素。
所以從ITO薄膜的制備工藝上來講,ITO薄膜的電阻率不僅與ITO薄膜材料的組成(包括錫含量和氧含量)有關(guān),同時(shí)與制備ITO薄膜時(shí)的工藝條件(包括沉積時(shí)的基片溫度、濺射電壓等)有關(guān)。有大量的科技文獻(xiàn)和實(shí)驗(yàn)分析了ITO薄膜的電阻率與ITO材料中的Sn、O2元素的含量,以及ITO薄膜制備時(shí)的基片溫度等工藝條件之間的關(guān)系。
三、通過低濺射電壓制備ITO薄膜的工藝和方法
1、低電壓濺射制備ITO薄膜由于ITO薄膜本身含有氧元素,磁控濺射制備ITO薄膜的過程中,會(huì)產(chǎn)生大量的氧負(fù)離子,氧負(fù)離子在電場的作用下以一定的粒子能量會(huì)轟擊到所沉積的ITO薄膜表面,使ITO薄膜的結(jié)晶結(jié)構(gòu)和晶體狀態(tài)造成結(jié)構(gòu)缺陷。濺射的電壓越大,氧負(fù)離子轟擊膜層表面的能量也越大,那么造成這種結(jié)構(gòu)缺陷的幾率就越大,產(chǎn)生晶體結(jié)構(gòu)缺陷也越嚴(yán)重,從而導(dǎo)致了ITO薄膜的電阻率上升,一般情況下,磁控濺射沉積ITO薄膜時(shí)的濺射電壓在-400V左右,如果使用一定的工藝方法將濺射電壓降到-200V以下,那么所沉積的ITO薄膜電阻率將降低50%以上,這樣不僅提高了ITO薄膜的產(chǎn)品質(zhì)量,同時(shí)也降低了產(chǎn)品的生產(chǎn)成本。
2、兩種在直流磁控濺射制備ITO薄膜時(shí),降低薄膜濺射電壓的有效途徑磁場強(qiáng)度對(duì)濺射電壓的影響當(dāng)磁場強(qiáng)度為300G時(shí),濺射電壓約為-350v;但當(dāng)磁場強(qiáng)度升高到1000G時(shí),濺射電壓下降至-250v左右。一般情況下,磁場強(qiáng)度越高、濺射電壓越低,但磁場強(qiáng)度為1000G以上時(shí),磁場強(qiáng)度對(duì)濺射電壓的影響就不明顯了。因此為了降低ITO薄膜的濺射電壓,可以通過合理的增強(qiáng)濺射陰極的磁場強(qiáng)度來實(shí)現(xiàn)。RF+DC電源使用對(duì)濺射電壓的影響為了有效的降低磁控濺射的電壓,以達(dá)到降低ITO薄膜電阻率的目的,可以采用了一套特殊的濺射陰極結(jié)構(gòu)和濺射直流電源,同時(shí)將一套3KW的射頻電源合理的匹配疊裝在一套6KW的直流電源上,在不同的直流濺射功率和射頻功率下進(jìn)行降低ITO薄膜濺射電壓的工藝研究。當(dāng)磁場強(qiáng)度為1000G,直流電源的功率為1200W時(shí),通過改變射頻電源的功率,經(jīng)大量的工藝實(shí)驗(yàn)得出:“當(dāng)射頻功率為600W時(shí),ITO靶的濺射電壓可以降到-110V”的結(jié)論。因此,RF+DC新型電源的應(yīng)用和特殊濺射陰極結(jié)構(gòu)的設(shè)計(jì)也能有效的降低ITO薄膜的濺射電壓,從而達(dá)到降低薄膜電阻率的目的。
3、降低ITO薄膜電阻率的新沉積方法-HDAP法HDAP法是利用高密度的電弧等離子體(HDAP)放電轟擊ITO靶材,使ITO材料蒸發(fā),沉積到基體材料上形成ITO薄膜。由于高能量電弧離子的作用導(dǎo)致ITO粒子中的In、Sn達(dá)到完全離化,從而增強(qiáng)沉積時(shí)的反應(yīng)活性,達(dá)到減少晶體結(jié)構(gòu)缺陷,降低電阻率的目的。
利用同樣成分的ITO材料,其它工藝條件保持一樣,并在同樣的基片溫度下,分別進(jìn)行“DC磁控濺射”、“DC+RF磁控濺射”、“HDAP法制備ITO薄膜”的實(shí)驗(yàn)。
實(shí)驗(yàn)結(jié)果可以看出,利用HDAP法能獲得電阻率較低的ITO薄膜,尤其是在基片溫度不能太高的材料上制備ITO薄膜時(shí),使用HDAP法制備ITO薄膜可以得到較理想的ITO薄膜;瑴囟鹊350℃左右時(shí),這三種沉積方法對(duì)ITO薄膜電阻率的影響較小。
通過掃描電鏡對(duì)磁控濺射和HDAP法制備的ITO薄膜進(jìn)行了微觀分析。很明顯HDAP法制備的ITO薄膜表面平坦、均勻。HDAP法制備ITO薄膜主要是針對(duì)基體材料不能加熱,同時(shí)又要求ITO薄膜的電阻率較低的制成比較適用。
四、主要應(yīng)用
隨著顯示器件行業(yè)的飛速發(fā)展,對(duì)ITO薄膜的產(chǎn)品性能特性提出了新的要求。同時(shí)ITO薄膜制備技術(shù)的深入發(fā)展,使顯示器件的需要變成可能。不同性能的ITO薄膜可以在不同顯示器件中的應(yīng)用。
五、在國內(nèi)的發(fā)展
在國內(nèi),ITO薄膜設(shè)備的制造和發(fā)展是20世紀(jì)80年代開始的,主要是一些單體式的真空鍍膜設(shè)備,由于ITO工藝和制成方法的限制,因此產(chǎn)品品質(zhì)較差、產(chǎn)量較小,當(dāng)時(shí)的產(chǎn)品主要用作普通的透明電極和太陽能電池等方面。
20世紀(jì)90年代初,隨著LCD器件的飛速發(fā)展,對(duì)ITO薄膜產(chǎn)品的需求量也是急劇的增加,國內(nèi)部分廠家紛紛開始從國外引進(jìn)一系列整廠ITO鍍膜生產(chǎn)線,但由于進(jìn)口設(shè)備的價(jià)格昂貴,技術(shù)服務(wù)不方便等因素,使許多廠商還是望而卻步。
80年代末,中國誕生了第一條TN-LCD用ITO連續(xù)鍍膜生產(chǎn)線。該生產(chǎn)線采用的工藝路線是將銦錫合金材料利用直流磁控濺射的原理沉積到基片的表面,并進(jìn)行高溫氧化處理,將銦錫合金薄膜轉(zhuǎn)換成所需的ITO薄膜。這種生產(chǎn)線的特點(diǎn)是設(shè)備的產(chǎn)能較低,質(zhì)量較差,工藝調(diào)節(jié)復(fù)雜。
90年代中期,隨著國內(nèi)LCD產(chǎn)業(yè)的發(fā)展,對(duì)ITO產(chǎn)品的需求量增大的同時(shí),對(duì)產(chǎn)品的質(zhì)量有了新的要求,因此出現(xiàn)了第二代ITO鍍膜生產(chǎn)線。該生產(chǎn)線不僅產(chǎn)量比第一代生產(chǎn)線有了大幅度的提升,同時(shí)由于直接采用ITO陶瓷靶材沉積ITO薄膜,并兼容了射頻磁控濺射沉積SiO2薄膜的工藝,使該生產(chǎn)線無論從產(chǎn)品的質(zhì)量上、還是工藝可控性等方面與第一代生產(chǎn)線相比均有了質(zhì)的飛躍。
99年,有效的解決了射頻磁控濺射沉積SiO2薄膜的沉積速率慢影響生產(chǎn)線的產(chǎn)能和設(shè)備的利用率等一系列問題,同時(shí)出現(xiàn)了第三代大型高檔ITO薄膜生產(chǎn)線。該生產(chǎn)線成功應(yīng)用了中頻反應(yīng)濺射SiO2薄膜的工藝、采用全分子泵無油真空系統(tǒng)、獨(dú)立的全自動(dòng)小車回架機(jī)構(gòu)。該生產(chǎn)線具備生產(chǎn)中高檔STN-LCD用ITO薄膜材料的能力。
隨著反射式LCD,增透式LCD、LCOS圖影機(jī)背投電視等顯示器件的發(fā)展,對(duì)ITO薄膜產(chǎn)品提出了更高的要求,SiO2/ITO兩層膜結(jié)構(gòu)的ITO薄膜材料滿足不了使用的需要,而比須采用多層復(fù)合膜系已達(dá)到產(chǎn)品的高反射性、或高透過率等光學(xué)性能要求。積累多年的設(shè)計(jì)開發(fā)經(jīng)驗(yàn),國內(nèi)生產(chǎn)企業(yè)推出了第四代大型多層薄膜生產(chǎn)線。該生產(chǎn)線由15個(gè)真空室組成,采用全分子泵無油真空系統(tǒng)、使用了RF/MF/DC三種磁控濺射工藝、通過PEM/PCV進(jìn)行工藝氣體的控制。該生產(chǎn)線具有連續(xù)沉積五層薄膜的能力。
隨著PDA、電子書等觸摸式輸入電子產(chǎn)品的悄然興起,相應(yīng)材料的制成設(shè)備也應(yīng)運(yùn)而生。由于觸摸式產(chǎn)品工作原理的特殊性,其所需的ITO薄膜必須是在柔性材料(PET)上制成的,薄膜的沉積溫度不能太高(小于120℃),同時(shí)要求ITO膜層較薄、面電阻高而且均勻,所以對(duì)ITO薄膜的沉積工藝提出了嚴(yán)格的要求。
隨著有機(jī)電致發(fā)光顯示器(OLED)以及其它顯示器件的發(fā)展,對(duì)ITO薄膜的制成工藝和設(shè)備將會(huì)有更新、更高的要求,同時(shí)也有力的推動(dòng)了ITO薄膜制成設(shè)備的發(fā)展。
版權(quán)聲明: 《激光世界》網(wǎng)站的一切內(nèi)容及解釋權(quán)皆歸《激光世界》雜志社版權(quán)所有,未經(jīng)書面同意不得轉(zhuǎn)載,違者必究! 《激光世界》雜志社。 |
友情鏈接 |
首頁 | 服務(wù)條款 | 隱私聲明| 關(guān)于我們 | 聯(lián)絡(luò)我們 Copyright© 2024: 《激光世界》; All Rights Reserved. |